

The timing behavior of PSR B0540-69 with X-ray observations of RXTE

Particle Astrophysics Division, IHEP, CAS

gemy@ihep.ac.cn

Abstract	Results	Results		
We present a new phase-coherent timing result for the young,	The pulse profile and timing results			

energetic pulsar PSR B0540-69 using about 15 yr data from the Rossi X-Ray Timing Explorer. Three new glitch events were discovered with $f_g/f \le 10^{-9}$ and $f_{1g}/f_1 \le 1.5 \times 10^{-4}$. The mean time between two glitches is 1809 days and glitch activity parameter $A_g \simeq 3.9 \times 10^{-10} \text{yr}^{-1}$ which is remarkably less than Crab pulsar. The braking index is 2.1502(2) and varies in different time interval with amplitude 0.035.

Basic information of PSR B0540-69

Four glitches have been observed from the RXTE observations. One of the glitches has been reported by Livingstone et al.(2005). The glitch epochs are 51345, 52945, 54434 and 55660 as shown in tables below. The v_1 also displays interesting behaviors as shown in Fig. 4.

Fig.4 v_1 varies continue and descend slowly if the v_g was added to v_1 and subtracted the trend between G2 and G3 plateaus and descend slowly from one plateau to another.

No	Glitch Epoch	$\dot{\nu}_g$	$\dot{\nu}_g/\dot{\nu}$
	MJD	$(10^{-15}s^{-2})$	(10^{-5})
1	51363 ± 25	-28.1 ± 1.8	15.0 ± 1.0
2	52955 ± 17	-18.7 ± 1.4	10.0 ± 0.7
3	54454 ± 45	-5.2 ± 1.6	2.8 ± 0.8
4	55671 ± 34	-3.7 ± 3.2	2.0 ± 1.7

PSR B0540-69 is a young and bright pulsar. The parameters are listed in the following table.

	PSR B0540-69
Remnant	SNR in LMC
P(ms)	50.3
$P - dot(10^{-15} ss^{-1})$	479
Age(yr)	1670
Detections	R,O,X,G
Brake Index	2.04(0.02)
Dist(kpc)	55
$B(10^{12}G)$	1.6
$E_{rot}(10^{38} erg s^{-1})$	1.5

Methods

The time of arrivals were produced observation by observation and were merged together according to their respective phase bin for the final timing analyses. Two methods were used to calculate the glitch parameters, similar to Livingstone et al.(2005). Fig.2 The spin parameters of PSR B0540-69. The vertical dashed lines represent the position of four glitches. (a): the residuals with two frequency derivatives fitting. (b): the residuals with two frequency derivatives fitting. (c): as function of time. (d): braking indices n as function of time.

No	Tim	ing range	Glitcl	ı Epoch	ν_g		$\dot{\nu}_g$	ν_g/ν	$\dot{\nu}_g/\dot{\nu}$
	MJI)	MJD		$(10^{-9}s^{-1})$)	$(10^{-15}s^{-2})$	(10^{-10})	(10^{-5})
1	5018	5-52944	51345	± 11	3.0 ± 2.5		-27.54 ± 0.27	1.5 ± 1.4	14.7 ± 0.1
2	5200	4-54042	52945	± 12	0.6 ± 3.9		-19.08 ± 0.62	0.3 ± 2.0	10.2 ± 0.3
3	5299	1-55857	54434	± 41	8.2 ± 5.8		-3.09 ± 0.46	4.1 ± 3.0	1.7 ± 0.3
4	5520	0-55920	55660	± 40	17.1 ± 3.0)	-3.47 ± 0.29	8.7 ± 1.5	1.9 ± 0.2
Epc	och	Time rang	ge	ν		$\dot{\nu}$		Ϋ	n
MJ	D	MJD		(Hz)		(10)	$^{-10}$ s ⁻²)	$(10^{-21} \mathrm{s}^{-3})$	
507	35	50150 - 53	1345	19.809943	33121(8)	-1.8	3795208(3)	3.788(3)	2.124(2)
521	51	51345 - 52	2945	19.786974	49611(3)	-1.8	37519515(7)	3.7999(6)	2.1382(4)
537	34.5	52945 - 54	4434	19.761353	38578(2)	-1.8	37017787(6)	3.8209(5)	2.1588(3)
550	00	54434 - 53	5660	19.74092	79892(4)	-1.8	366083(5)	3.784(1)	2.1451(7)
557	99.5	55660 - 58	5920	19.72804	6690(1)	-1.8	363499(3)	3.88(9)	2.20(5)

Conclusion

(1) Another three glitches of PSR B0540-69 have been observed with RXTE data.

(2) The mean braking index of PSR B0540-69 is 2.1502.

(1) Partially phase-coherent timing process is described as follows: First, fitting 2N TOAs with second frequency derivative. Second, moving N TOAs and fitting the next time interval, which also including 2N TOAs. After these steps, v, v_1 and v_2 series were measured.

(2) Full coherent timing method: (1) TOAs were fitted at test glitch epoch and the χ^2 was calculated. Second, change test glitch epoch and repeated the first step. At last, the χ^2 is the function of test glitch epoch. The epoch of the glitch is obtained where the minimum χ^2 reached.

Fig.3 PSR B0540-69 timing residuals. (a): Timing residuals without parameters of G2 for MJD 52000-54000. (b): Timing residuals with parameters of G2 for MJD 52000-54000. (c): Timing residuals without parameters of G3 and G4 for MJD 52984-55920. (d): Timing residuals with parameters of G3 and G4 for MJD 52984-55920.

Acknowledgements

This work is supported by National Science Foundation of China (11233001) and the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, Grant No. XDA04010300.

All these work were also completed alone with Ferdman, Archibald and Kaspi, arxiv 1506.0018.